Cultivation of Candida langeronii in sugar cane bagasse hemicellulosic hydrolyzate for the production of single cell protein
نویسنده
چکیده
Sugar cane bagasse hemicellulosic fraction was hydrolysed by treatment with 70 mg of sulphuric acid per gram of dry mass at 125 °C for 2 h. The hydrolysate was used as the substrate to grow Candida langeronii RLJ Y-019 at 42 °C; initial pH 6.0; stirring at 700 rev/min and aeration at 1.0 and 2.0 v/v/min. The utilization of D-xylose, L-arabinose, and acetic acid were delayed due to the presence of D-glucose, but after D-glucose depletion the other carbon sources were utilized. The kinetic parameters calculated for both cultivations at 1.0 and 2.0 v/v/min included: maximum speci®c growth rate (lmax) of 0.29 0.01 h )1 and 0.43 0.016 h, yields (Yx/s) of 0.36 0.012 and 0.40 0.012 gx/gs and productivity (Qx) of 0.81 0.016 and 0.97 0.012 gx/l/h, respectively, and compared favourably with published results obtained with Candida utilis and Geotrichum candidum. Candida langeronii appeared superior to C. utilis for biomass production from hemicellulose hydrolysate, in that it utilized L-arabinose and was capable of growth at higher temperatures. The biomass contained 48.2, 1.4, 5.8 and 23.4% of total protein, DNA, RNA and carbohydrate, respectively and contained essential amino acids for animal feed.
منابع مشابه
Comparative study on chemical pretreatment (acid and ozone) methods for improving enzymatic digestibility of sugar cane bagasse
Sugarcane bagasse contains cellulose, lignin and hemicellulose, 39-42%, 20-25% and 25-27% respectively. So it is can be used as a sugar source in many processes. Lignin and hemicellulose must be removed before hydrolysis of cellulose. Several different pretreatment approaches have been studied. The purpose of this research is comparison of acid, ozone and combination of ozone-acid as pretreatme...
متن کاملAspects of the cell growth of Candida guilliermondii in sugar cane bagasse hydrolysate.
In this work the behavior of the growth of Candida guilliermondii FTI 20037 in sugar cane bagasse hemicellulosic hydrolysate on various oxygen transfer rates was investigated. The yeast was able to grow and produced xylitol at different performance levels. At 1.0 vvm (volume of air per volume of medium per minute) the highest growth with 24.4 g/l was observed, but no xylitol was produced. At ae...
متن کاملComparative study on chemical pretreatment (acid and ozone) methods for improving enzymatic digestibility of sugar cane bagasse
Sugarcane bagasse contains cellulose, lignin and hemicellulose, 39-42%, 20-25% and 25-27% respectively. So it is can be used as a sugar source in many processes. Lignin and hemicellulose must be removed before hydrolysis of cellulose. Several different pretreatment approaches have been studied. The purpose of this research is comparison of acid, ozone and combination of ozone-acid as pretreatme...
متن کاملComparative study on chemical pretreatment (acid and ozone) methods for improving enzymatic digestibility of sugar cane bagasse
Sugarcane bagasse contains cellulose, lignin and hemicellulose, 39-42%, 20-25% and 25-27% respectively. So it is can be used as a sugar source in many processes. Lignin and hemicellulose must be removed before hydrolysis of cellulose. Several different pretreatment approaches have been studied. The purpose of this research is comparison of acid, ozone and combination of ozone-acid as pretreatme...
متن کاملEffect of Different Pretreatment of Sugar Cane Bagasse on Cellulase and Xylanases Production by the Mutant Penicillium echinulatum 9A02S1 Grown in Submerged Culture
The main limitation to the industrial scale hydrolysis of cellulose is the cost of cellulase production. This study evaluated cellulase and xylanase enzyme production by the cellulolytic mutant Penicillium echinulatum 9A02S1 using pretreated sugar cane bagasse as a carbon source. Most cultures grown with pretreated bagasse showed similar enzymatic activities to or higher enzymatic activities th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999